• 相关博文
  • 最新资讯
加载中...
  • RANet : 分辨率自适应网络效果和性能的best trade-off | CVPR 2020

    深度CNN带来了性能提升的同时也带来了过高的计算量,许多研究放在了如何进行网络加速上面,其中比较直接的是根据样本难易程度进行自动调整的自适应网络。基于对自适应网络的研究,论文提出了自适应网络RANet(Resolution Adaptive Network),思想如图1所示,网络包含多个不同输入分辨率和深度子网,样本先从最小的子网开始识别,若结果满足条件则退出,否则继续使用更大的子网进行识别,子网的特征不是独有的,下一级别的子网会融合上一级别的子网特征,从实验来看,论文在效果和性能上取得了很不错的trade-off。

    CNN
    2020.04.07 0
  • 用于单图像超分辨率的对偶回归网络,达到最新SOTA | CVPR 2020

    本文提出了一种对偶回归方法,它通过引入对LR数据的附加约束来减少函数的解空间。 具体而言,除了学习从LR到HR图像的映射外,本文方法还学习了另外的对偶回归映射,用于估计下采样的内核并重建LR图像,从而形成了一个闭环,可以提供额外的监督。

  • 基于轮廓调整的SOTA实例分割方法,速度达32.3fps | CVPR 2020

    实例分割是许多计算机视觉任务中的重要手段,目前大多数的算法都采用在给定的bbox中进行pixel-wise分割的方法。受snake算法和Curve-GCN的启发,论文采用基于轮廓的逐步调整策略,提出了Deep snake算法进行实时实例分割,该算法将初始轮廓逐渐优化为目标的边界,如图1所示,达到很好的性能且依然保持很高的实时性(32.3fps) 。

    2020.03.30 0
  • 信息保留的二值神经网络IR-Net,落地性能和实用性俱佳 | CVPR 2020

    在CVPR 2020上,商汤研究院链接与编译组和北京航空航天大学刘祥龙老师团队提出了一种旨在优化前后向传播中信息流的实用、高效的网络二值化新算法IR-Net。不同于以往二值神经网络大多关注量化误差方面,本文首次从统一信息的角度研究了二值网络的前向和后向传播过程,为网络二值化机制的研究提供了全新视角。同时,该工作首次在ARM设备上进行了先进二值化算法效率验证,显示了IR-Net部署时的优异性能和极高的实用性,有助于解决工业界关注的神经网络二值化落地的核心问题。

    2020.03.26 0
  • 无需3D运动数据训练,最新人体姿势估计方法达到SOTA | CVPR 2020

    本文最关键的创新在于它是一种对抗性学习框架,该框架利用AMASS数据集来区分真实的人类动作与本文利用时序姿态和动作回归网络产生的动作。本文定义了一个时序网络体系结构,并展示了在没有真实3D标签的情况下,能够产生序列级别的合理的运动序列。本文进行了大量实验,分析了运动性的重要性,并演示了VIBE在非常有挑战性的3D姿态估计数据集上的有效性,达到了SOTA性能。

  • CVPR 2020 | 南大提伪监督目标定位方法,弱监督目标定位的最新SOTA

    论文提出伪监督目标定位方法(PSOL)来解决目前弱监督目标定位方法的问题,该方法将定位与分类分开成两个独立的网络,然后在训练集上使用Deep descriptor transformation(DDT)生成伪GT进行训练,整体效果达到SOTA,论文化繁为简,值得学习。

    2020.03.02 0
  • 经典再读 | NASNet:神经架构搜索网络在图像分类中的表现

    从 AutoML 到 NAS,都是企业和开发者的热门关注技术,以往我们也分享了很多相关内容。而这篇文章将对 Google Brain 发布的 NASNet 进行介绍。NASNet 在 CVPR2018 发表,至今已经有超过400次引用。

    2019.09.16 0
  • 西交出身,辛书冕获CVPR 2019最佳论文,李飞飞团队获经典论文奖

    结果显示,华人几乎包揽了最佳论文、最佳学生论文和最具影响力论文奖,分别由来自CMU的辛书冕等人、加州大学圣巴巴拉分校的王鑫等人和李飞飞团队等人摘得!

    2019.06.19 0
  • 亮风台新提端到端AR投影光学补偿算法 | CVPR 2019 Oral

    作为计算机视觉领域里的顶级会议,CVPR 2019 录取论文代表了计算机视觉领域在2019年最新的科技水平以及未来发展潮流。今年有超过 5165 篇大会论文投稿,最终录取 1299 篇。这些录取的最新科研成果,涵盖了计算机视觉领域各项前沿工作。而此次介绍的来自美国天普大学(Temple University)和美图-亮风台联合实验室的黄兵姚和凌海滨提出了端到端的投影广度补偿的策略。

    2019.05.31 0
  • 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet | CVPR 2019

    对于视觉识别中的区域层次和像素层次问题,分类网络(如ResNet、VGGNet等)学到的表征分辨率比较低,在此基础上恢复的高分辨率表征空间区分度仍然不够强,使其在对空间精度敏感的任务上很难取得准确的预测结果。为此,微软亚洲研究院视觉计算组提出高分辨率深度神经网络(HRNet),对网络结构做了基础性的改变,由传统的串行连接高低分辨率卷积,改成并行连接高低分辨率卷积,通过全程保持高分辨率和对高低分辨率表征的多次信息交换来学到丰富的高分辨率表征,在多个数据集的人体姿态估计任务中取得了最佳的性能。

  • 17篇论文入选CVPR 2019,百度AI都在关注什么?(附论文地址)

    计算机视觉和模式识别大会CVPR 2019即将于6月在美国长滩召开,作为人工智能领域计算机视觉方向的重要学术会议,CVPR每年都会吸引全球最顶尖的学术机构和公司的研究人员投稿。 CVPR官网显示,今年有超过5165篇的大会论文投稿,最终录取1299篇,录取率约为25%。据了解,去年的CVPR 2018共有979篇论文被主会收录,录用率约为29%。相比2018,今年的竞争更加激烈。 今年百度公司有17篇论文被CVPR接收,内容涵盖了语义分割、网络剪枝、ReID、GAN等诸多方向,而且很多技术的落地场景都涉及无人驾驶。现在我们就来带大家看下百度入选CVPR 2019的17篇论文。

  • 大疆、港科大联手!双目3D目标检测实验效果大放送 | CVPR 2019

    2018 年在 3D 检测方面的文章层出不穷,也是各个公司无人驾驶或者机器人学部门关注的重点,包含了点云,点云图像融合,以及单目 3D 检测,但是在双目视觉方面的贡献还是比较少,自从 3DOP 之后。总体来说,图像的检测距离、图像的 density 以及 context 信息,在 3D检测中是不可或缺的一部分,因此作者在这篇文章中挖掘了双目视觉做 3D检测的的潜力。

    2019.03.25 0
  • CVPR2019|微软、中科大开源基于深度高分辨表示学习的姿态估计算法

    昨天arXiv出现了好几篇被CVPR 2019接收的论文。其中来自微软和中国科技大学研究学者的论文《Deep High-Resolution Representation Learning for Human Pose Estimation》和相应代码甫一公布,立刻引起大家的关注,不到一天之内,github上已有将近50颗星。

    2019.03.25 0
  • CVPR2019 | 斯坦福学者提出GIoU,目标检测任务的新Loss

    本文是对 CVPR2019 论文《Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression》的解读,通过对 Loss 的修改提升检测任务的效果,觉得思路很棒。

  • 首发 | 旷视14篇CVPR 2019论文,都有哪些亮点?

    今年,旷视科技在 CVPR 2019 上共有 14 篇论文被接收。这 14 篇论文涉及行人重识别、场景文字检测、全景分割、图像超分辨率、语义分割、时空检测等技术方向。今天,AI科技大本营就先为大家介绍这 14 篇论文,后续我们会继续对各大科技公司的 CVPR 亮点工作进行深度报道,大家可以持续关注。

    2019.03.06 0