• 相关博文
  • 最新资讯
加载中...
  • 如何更新你的机器学习模型?手把手带你设计一个可持续的预测模型!

    在本文中,我们将讨论为什么不管你的初始训练数据过程多么严格,继续训练你的机器学习模型都是至关重要的。我们还将讨论再训练的方法以及每种方法的优点。

    2020.03.18 0
  • 脉冲神经网络在目标检测的首次尝试,性能堪比CNN | AAAI 2020

    论文打算使用DNN-to-SNN转化方法将SNN应用到更复杂的目标检测领域中,图片分类只需要选择分类就好,而目标检测则需要神经网络进行高度准确的数字预测,难很多。在深入分析后,论文实现YOLO的转换主要面临以下两个问题:

    2020.03.17 0
  • Nature/Science等研究模型模拟仿真警告:新冠肺炎全球爆发或已不可避免

    论文中利用GLEAM模型进行最终的预测,GLEAM模型可以对流行病全球传播进行逼真的模拟,其模型以天为时间步骤执行模拟,以三层结构中的数据来建立一个基于个体、空间和随机传播的流行病模型。

    2020.03.03 0
  • 2020年AI如何走?Jeff Dean和其他四位“大神”已做预测!

    人工智能已经不再是随时准备改变世界的状态,而是已经在改变世界。在迈入2020年这新的一年、以及新的20年代之际,笔者请到了AI方面最敏锐的观察者,请他们回顾2019年取得的进展,并展望2020年机器学习将如何进一步走向成熟。

    2020.02.08 0
  • 在调查过基于模型的强化学习方法后,我们得到这些结论

    强化学习系统的决策方式有两种。基于模型的方法中,系统通过世界预测模型提问“如果执行了x会发生什么”,从而选出最佳的x方案。在无模型的方法中,建模步骤被完全跳过,直接跳至控制策略学习。尽管实际中,这两种方法的界限可能会非常模糊,但用以粗略划分算法的可能性空间还是很有指导意义的。

    2020.01.13 0
  • 代替Mask R-CNN,BlendMask欲做实例预测任务的新基准?

    实例分割是一种基础视觉任务。在今天要为大家介绍的工作中,作者通过有效地将实例级信息与具有较低级细粒度的语义信息结合起来,提升了掩码预测精度。本文的主要贡献是提出了一个Blender模块,该模块从自上而下和自下而上的实例分割方法中汲取了灵感。由于该方法简单且有效,作者希望本文的BlendMask可以作为各种实例预测任务的基准。

    2020.01.08 0
  • 阿里达摩院2020趋势第一弹:感知智能的“天花板”和认知智能的“野望”

    1月2日,阿里巴巴达摩院发布2020十大科技趋势,其中趋势预测的第一弹即为“人工智能从感知智能向认知智能演进”。AI发展为什么会有这种演进?从技术层面,AI科技大本营采访了达摩院资深算法专家杨红霞,就感知智能向认知智能的演进和变革进行更深入解读。

    2020.01.03 0
  • 避免神经网络过拟合的5种技术(附链接) | CSDN博文精选

    当模型试着预测噪声较多的数据的趋势时,由于模型参数过多、过于复杂,就会导致过拟合。过拟合的模型通常是不精确的,因为这样的预测趋势并不会反映数据的真实情况。我们可以通过模型在已知的数据(训练集)中有好的预测结果,但在未知的数据(测试集)中较差的表现来判断是否存在过拟合。机器学习模型的目的是从训练集到该问题领域的任何数据集上均有泛化的较好表现,因为我们希望模型能够预测未知的数据。

    2019.12.26 0
  • 时至今日,NLP怎么还这么难!

    要搞清楚自然语言理解难在哪儿,先看自然语言理解任务的本质是什么。作为人工智能关注的三大信息类型(语音、视觉、语言)之一,自然语言文本是典型的无结构数据,由语言符号(如汉字)序列构成。要实现对自然语言的表意的理解,需要建立对该无结构文本背后的语义结构的预测。

  • 顶会论文:基于神经网络StarNet的行人轨迹交互预测算法

    美团正在积极研发无人配送机器人,建立无人配送开放平台,与产学研各方共建无人配送创新生态,希望能在一个场景相对简单、操作高度重复的物流配送中,提高物流配送效率。在此过程中,美团无人配送团队也取得了一些技术层面的突破,比如基于神经网络StarNet的行人轨迹交互预测算法,论文已发表在IROS 2019。IROS 的全称是IEEE/RSJ International Conference on Intelligent Robots and Systems,IEEE智能机器人与系统国际会议,它和ICRA、RSS并称为机器人领域三大国际顶会。

    2019.12.17 0
  • 「AETA地震预测AI算法大赛」上线啦!

    瓜分14万大奖,结交大牛,线上线下竞赛培训... 快快报名挑战吧!

    2019.12.13
  • 清微智能欧阳鹏:可重构架构提升神经网络处理能效

    人工智能向各领域的渗透,让AI芯片市场迎来飞跃发展,Tractica预测,AI市场的演变将推动深度学习芯片组的出货量从2018年的1.649亿增长到2025年的29亿单位以上。届时,深度学习芯片组的全球市场将达到663亿美元。

    2019.10.25 0
  • 自动驾驶关键环节:行人的行为意图建模和预测(上)

    介绍一下最近行人行为意图建模和预测的研究工作

    2019.10.18 0
  • 值得收藏!基于激光雷达数据的深度学习目标检测方法大合集(上)

    将全卷积网络技术移植到三维距离扫描数据检测任务。具体地,根据Velodyne 64E激光雷达的距离数据,将场景设置为车辆检测任务。在2D点图呈现数据,并使用单个2D端到端全卷积网络同时预测目标置信度和边框。通过设计的边框编码,使用2D卷积网络也能够预测完整的3D边框。

  • AI ProCon圆满落幕,五大技术专场精彩瞬间不容错过

    2019 AI ProCon已全部圆满结束。在这三天中,来自全球的数千开发者共聚北京,与60+人工智能领域顶级技术专家和大牛面对面交流,跨越学术研究与技术生产,深耕技术本身,各领域专家和实践者分享AI落地经验,为开发者指出技术发展的重点,预测技术发展趋势,为开发者答疑解惑。

  • 三两下实现NLP训练和预测,这四个框架你要知道

    大家通常基于 NLP 相关的深度学习框架编写自己的模型,如 OpenNMT、ParlAI 和 AllenNLP 等。借助这些框架,三两下就可以实现一个 NLP 相关基础任务的训练和预测。但是当我们需要对基础任务进行改动时,又被代码封装束缚,举步维艰。因此,本文主要针对于如何使用框架实现自定义模型,帮助大家快速了解框架的使用方法。

  • 1小时上手MaskRCNN·Keras开源实战 | 深度应用

    MaskRCNN 是何恺明基于以往的 faster rcnn 架构提出的新的卷积网络,一举完成了 object instance segmentation。该方法在有效地目标的同时完成了高质量的语义分割。文章的主要思路就是把原有的 Faster-RCNN 进行扩展,添加一个分支使用现有的检测对目标进行并行预测。

  • AI和大数据如何落地智能城市?京东城市这6篇论文必读 | KDD 2019

    在此次的录取论文里,京东城市凭借在城市计算领域 6 篇论文被 KDD2019 收录,展现了 AI 和大数据前沿技术在智能城市建设中的应用,包括物流人力资源调度、城市细粒度人流量推测、城市交通预测、轨迹数据版权保护、城市的地块表征学习、天气预报精准预测等问题的研究成果。

    2019.08.07 0
  • 新一届最强预训练模型上榜,出于BERT而胜于BERT

    预训练方法设计有不同的训练目标,包括语言建模、机器翻译以及遮蔽语言建模等。最近发表的许多论文都使用了微调模型,并预先训练了一些遮蔽语言模型的变体。然而,还有一些较新的方法是通过对多任务微调提高性能,结合实体嵌入,跨度预测和自回归预训练的多种变体。它们通常在更大数据上训练更大的模型来提高性能。本文的目标是通过复制、简化和更好地微调训练BERT,以作为更好理解上述方法的相对性能的参考值。 

    2019.08.05 0
  • 超酷炫!Facebook用深度学习和弱监督学习绘制全球精准道路图

    现如今,即使可以借助卫星图像和绘制软件,创建精确的道路图也依然是一个费时费力的人力加工过程。许多地区,特别是在发展中国家也仍是空白。为了缩小这一差距,Facebook 的人工智能研究人员和工程师们开发了一种新的方法,该方法通过深度学习和弱监督学习,根据商用高分辨率卫星图像来预测道路网络。由此产生的模型为精确程度设定了一个新标准,因为它能够较好地适应道路网络中的地区差异,有效地预测全球范围内的道路。

每页显示 共26条数据 < 1 2 >      到第 GO