• 相关博文
  • 最新资讯
加载中...
  • 2019,不可错过的NLP“高光时刻”

    对自然语音处理(NLP)领域而言,2019年是令人印象深刻的一年,本文将回顾2019年NLP和机器学习领域的重要事件。内容 主要集中于 NLP 领域,但也会包括一些与 AI 有关的有趣故事,包括新发布模型、工程成果、年度报告以及学习资源等。

  • GitHub标星近10万:只需5秒音源,这个网络就能实时“克隆”你的声音

    本文中,Google 团队提出了一种文本语音合成(text to speech)神经系统,能通过少量样本学习到多个不同说话者(speaker)的语音特征,并合成他们的讲话音频。此外,对于训练时网络没有接触过的说话者,也能在不重新训练的情况下,仅通过未知说话者数秒的音频来合成其讲话音频,即网络具有零样本学习能力。

  • 微软提出极低资源下语音合成与识别新方法,小语种不怕没数据!

    目前,人类使用的语言种类有近7000种,然而由于缺乏足够的语音-文本监督数据,绝大多数语言并没有对应的语音合成与识别功能。为此,微软亚洲研究院机器学习组联合微软(亚洲)互联网工程院语音团队在ICML 2019上提出了极低资源下的语音合成与识别新方法,帮助所有人都可以享受到最新语音技术带来的便捷。