• 相关博文
  • 最新资讯
加载中...
  • 万字长文综述目标检测领域,你要的都在这里

    目标检测是计算机视觉中的一个重要问题,近年来传统检测方法已难以满足人们对目标检测效果的要求,随着深度学习在图像分类任务上取得巨大进展,基于深度学习的目标检测算法逐渐成为主流。

    2020.06.09 0
  • 林轩田机器学习基石课程学习笔记1 -- The Learning Problem

    什么是“学习”?学习就是人类通过观察、积累经验,掌握某项技能或能力。就好像我们从小学习识别字母、认识汉字,就是学习的过程。而机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。

    2020.04.03 0
  • 数据库设计的10个最佳实践

    数据库是应用及计算机的核心元素,负责存储运行软件应用所需的一切重要数据。为了保障应用正常运行,总有一个甚至多个数据库在默默运作。我们可以把数据库视为信息仓库,以结构化的方式存储了大量的相关信息,并合理分类,方便搜索及使用。

    2020.04.01 0
  • 基于轮廓调整的SOTA实例分割方法,速度达32.3fps | CVPR 2020

    实例分割是许多计算机视觉任务中的重要手段,目前大多数的算法都采用在给定的bbox中进行pixel-wise分割的方法。受snake算法和Curve-GCN的启发,论文采用基于轮廓的逐步调整策略,提出了Deep snake算法进行实时实例分割,该算法将初始轮廓逐渐优化为目标的边界,如图1所示,达到很好的性能且依然保持很高的实时性(32.3fps) 。

    2020.03.30 0
  • 64% 的企业未实现智能化,5成公司算法工程师团队规模小于 10人,AI 工程师的机遇在哪里?...

    从就业的角度来看,由于算法工程化才是商业落地的核心关键,因此拥有扎实工程化能力的算法工程师更受青睐。另一方面,由于深度学习是以大数据为基础的,而感知智能中的计算机视觉又是目前深度学习较为成熟的应用,所以,机器学习和深度学习工程师,以及数据工程师、计算机视觉工程师成为热门岗位。

    2020.03.25 0
  • 代替Mask R-CNN,BlendMask欲做实例预测任务的新基准?

    实例分割是一种基础视觉任务。在今天要为大家介绍的工作中,作者通过有效地将实例级信息与具有较低级细粒度的语义信息结合起来,提升了掩码预测精度。本文的主要贡献是提出了一个Blender模块,该模块从自上而下和自下而上的实例分割方法中汲取了灵感。由于该方法简单且有效,作者希望本文的BlendMask可以作为各种实例预测任务的基准。

    2020.01.08 0
  • 机器学习模型五花八门不知道怎么选?这份指南告诉你

    一般来说,基于树形结构的模型在Kaggle竞赛中是表现最好的,而其它的模型可以用于融合模型。对于计算机视觉领域的挑战,CNNs (Convolutional Neural Network, 卷积神经网络)是最适合不过的。而对于NLP(Natural Language Processing,自然语言处理),LSTMs或GRUs是最好的选择。下面是一个不完全模型细目清单,同时列出了每个模型的一些优缺点。

    2020.01.07 0
  • 从LeNet到GoogLeNet:逐层详解,看卷积神经网络的进化

    深度学习的兴起使卷积神经网络在计算机视觉方面大放异彩,本文将按时间和创新点顺序介绍一系列网络结构:LeNet、AlexNet、VGGNet、InceptionNet 与 ResNet。网络上大部分文章都只是草草讲述,本文小波仔仔细梳理,从问题的背景,网络结构,为什么设计这样的结构,参数数量各方面详细讲述CNN的进化之路。

    2020.01.06 0
  • 量子算命,在线掷筊:一个IBM量子云计算机的应用实践,代码都有了

    现在,日本一位华人工程师在其个人网站和Github主页上上线了两个新项目:《量子算命,在线掷筊:IBM 量子云计算机使用入门》、《量子算命:爻 System》,希望通过量子力学让你足不出户,和神明通个电话。 前有“AI面相学”,今有“量子神明”出世了,没准两者合计一下兴许可以找风投要钱办公司打开新(圈)市(钱)场了?

    2019.11.27 0
  • 美还是丑?这有一个CNN开发的颜值评分器 | 实战

    在人工智能的发展越来越火热的今天,其中智能应用也在伴随着我们的生活,其中最具有代表性的便是图像识别,并且其中的应用比比皆是,如车站的人脸识别系统,交通的智能监控车牌号系统等等。而卷积神经网络作为图像识别的首选算法,对于图像的特征提取具有很好的效果,而TensorFlow作为Google的开源框架具有很好的结构化特征,而本篇文章将利用卷积神经网络算法对图像识别进行应用,开发出颜值评分器的功能。

    2019.11.12 0
  • AttoNets,一种新型的更快、更高效边缘计算神经网络

    在物体检测中的实验结果表明, 在使用更少的参数以及更低的计算花销的情况下,AttoNets 的效率与现有最优模型相当,并在准确率指标上大幅超越现有模型(与 MobileNet-V1相比,最小的 AttoNet 的准确率提升约 1.8%,使用的乘-加操作数和参数量减小了10倍)。另外,本文也在实例分割和物体探测应用中检测了 AttoNets 的效果,并发现与基于 ResNet-50 的 Mask R-Cnn 相比,通过使用基于 AttoNet的 Mask R-Cnn 网络,参数量和计算花销得到了大幅度降低(乘-加操作减少5倍,参数量减少2倍)。

  • 十年公务员转行IT,自学AI三年,他淬炼出746页机器学习入门笔记

    近期,梁劲传来该笔记重大更新的消息。《机器学习——从入门到放弃》这本笔记的更新没有停止,在基于上一版的基础上丰富了近 200 页计算机视觉领域的知识内容,目前最新版已达 746 页,累计下载近 8 万次。

    2019.11.06 0
  • 从一张风景照中就学会的SinGAN模型,究竟是什么神操作?| ICCV 2019最佳论文

    10 月 27 日-11 月 2 日,计算机视觉领域的顶级会议 International Conference on Computer Vision(ICCV)在首尔召开,10 月 29 日在大会上正式公布了最佳论文奖(Best Paper Award)由论文《SinGAN:从单张图像学习生成模型》(SinGAN: Learning a Generative Model from a Single Natural Image)获得,该论文介绍了一种无条件生成模型——SinGAN,它可以从单个自然图像中学习。该模型经过训练,可以捕获图像内斑块的内部分布,之后生成高质量、多样化的样本,视觉内容与原图像相同。用户研究证实,生成的样本通常可以假乱真,SinGAN 在各种图像处理任务中具有广泛的实用性。

    2019.11.06 0
  • ICCV 2019 | 中国研究者无缘最佳论文奖项,接收论文数量超美国,商汤57篇论文入选...

    10 月 27 日-11 月 2 日,计算机视觉领域的顶级会议 International Conference on Computer Vision(ICCV)在首尔召开,10 月 29 日在大会上正式公布了最佳论文奖(Best Paper Award)由论文《SinGAN:从单张图像学习生成模型》(SinGAN: Learning a Generative Model from a Single Natural Image)获得,最佳学生论文奖(Best Student Paper Award)则由《PLMP——完整的多视图可见性中的点线最小问题》(PLMP——Point-Line Minimal Problems in Complete Multi-View Visibility)获得。

    2019.10.30 0
  • 学界观点 | NLP领域“劣币驱逐良币”,谁是罪魁祸首?

    “劣币驱逐良币”的现象在很多领域都存在,包括自然语言研究领域。很多研究人员为了更容易让研究成果成功发表或获得奖项,往往会选择使用更容易走捷径的训练数据集,尽管这些数据集并不一定是最好和最合适的。本文中,阿伯丁大学计算机科学系教授和 Arria NLG 首席科学家 Ehud Reiter 就以自己的亲身经历为例,讨论了他对于这个话题的看法。

  • 击败最新无监督域自适应方法,研究人员提轻量CNN新架构OSNet

    这篇论文《Learning Generalisable Omni-Scale Representations for Person Re-Identification》是一篇关于行人再识别领域的新研究(Person Re-Identification , re-ID)。这篇论文中,作者们提出了一个新的CNN架构——OSNet,在实验效果方面,这一新模型架构击败了最新的无监督域自适应方法。

    2019.10.21 0
  • 计算机解决问题没有奇技淫巧,但动态规划还是有点套路

    动态规划算法似乎是一种很高深莫测的算法,你会在一些面试或算法书籍的高级技巧部分看到相关内容,什么状态转移方程,重叠子问题,最优子结构等高大上的词汇也可能让你望而却步。

    2019.09.28 0
  • 300秒搞定第一超算1万年的计算量,量子霸权时代已来?

    近日,美国航天局(NASA)发布了一篇名为《Quantum Supremacy Using a Programmable Superconducting Processor》的报道,称谷歌的量子计算机用3分20秒就完成了世界第一超级计算机需要花费1万年才能完成的计算任务。不过这篇文件随后就被删除了,目前NASA的官网已经没有此文章显示了。

    2019.09.25 0
  • 旷视张祥雨:高效轻量级深度模型的研究和实践 | AI ProCon 2019

    在CSDN 主办的 2019 中国 AI 开发者大会(AI ProCon 2019)计算机视觉技术专题中,旷视研究院主任研究员、基础模型组负责人张祥雨主要从轻量级架构、模型裁剪、模型搜索三大思路讲述了高效轻量级深度模型的研究和实践。

    2019.09.24 0
每页显示 共54条数据 < 1 2 3 >      到第 GO

关于我们

关注「AI科技大本营」​

转载 & 投稿(微信):1092722531

商务合作(微信):15222814505