- 相关博文
- 最新资讯
-
作者 | 年素清责编 | 王晓曼出品 | 程序人生(ID:coder _life)无论是整日写代码的程序员,还是依靠电脑工作的白领,他们的日常操作肯定离开不了“复制”和“粘贴”这两个功...
-
Google 重磅发布 Flutter 2 !一套代码横扫 5 大系统原创 郑丽媛 CSDN 今天今日,谷歌重磅发布了下一代 Flutter —— 专为 Web、移动和桌面而构建的 Flutter 2!作为谷歌免费开源的 UI 工具包,Flutter 帮助许多开发者构建了多平台应用,支持移动、Web、桌面和嵌入式平台,仅在 Google Play Store 平台上就有已超过 15 万个基于 Flutter 开发的应用,国内我们熟知的闲鱼 App、以及“国民应用”微信,均使用了 Flutter 进行
-
编者按:新药研发的过程是一个耗资大、周期长以及风险高的行业,传统的药物研发据统计,平均研究每一个新药从靶点发现到药物上市需要大约10年的时间和需要大约20亿美元的研究经费。如今,人工智能正在改变这一现状。Insilico Medicine这首次利用AI成功地将生物学和化学结合起来,发现了一个新的生物靶点,以及相应的候选药物,整个研发过程仅耗费短短18个月,研发成本只有260万美元,相当于类似项目的十分之一。作者 | 阿司匹林出品 | CSDN新药研发的贵,超出想象!一款创新药物的研发.
-
内容导读北京时间 3 月 4 日,PyTorch 官方博客发布 1.8版本。据官方介绍,新版本主要包括编译器和分布式训练更新,同时新增了部分移动端教程。整体来看,本次版本更新涵盖 1.7 版本发布以来,共计 3,000 多次 commit,包括编译、代码优化、科学计算前端 API 以及通过 pytorch.org 提供的二进制文件支持 AMD ROCm。同时 PyTorch 1.8 还为管道和模型并行的大规模训练,进行了功能改进和梯度压缩。其中一些重点更新包括:通过 torch.fx.
-
词向量模型简介概述词向量维度Word2VecCBOW 模型Skip-Gram 模型负采样模型词向量的训练过程1. 初始化词向量矩阵2. 神经网络反向传播概述我们先来说说词向量究竟是什么. 当我们把文本交给算法来处理的时候, 计算机并不能理解我们输入的文本, 词向量就由此而生了. 简单的来说, 词向量就是将词语转换成数字组成的向量.当我们描述一个人的时候, 我们会使用身高体重等种种指标, 这些指标就可以当做向量. 有了向量我们就可以使用不同方法来计算相似度.那我们如何来描述语言的特征呢? 我们把语
-
来自『央视新闻』 编辑 / 昱良9月18日,华为发布全球最快AI训练集群——Atlas 900。这款AI产品,取名自古希腊神话中的擎天巨神。它有什么特别之处?真能“擎天”...
-
2016年,DeepMind的围棋机器人AlphaGo在与李世石的第二局对决中第37手落子的瞬间,整个围棋界都震惊了。评棋人Michael Redmond,一位有着近千场顶级比赛经验的职业棋手,在直播中目瞪口呆,他甚至把这颗棋子从棋盘上拿下来观察周边的情况,仿佛要确认AlphaGo是否下错了棋。第二天,Redmond告诉美国围棋E杂志:“我到现在还不明白这步棋背后的道理。”李世石这位统治了世界棋坛十年的大师,花了 12 分钟来研究这一棋局,之后才做出回应。图 13-1展示了这手传说中的落子。图.
-
对于新手来说,在编程过程中最头痛的事就是遇到Bug后不知所措。时至今日,当有新手在群里提问时,也不时会看到下图的解决方案,即通过百度或者其他搜索引擎来解决问题: 诚然,很多问题可以通过搜索引擎得到答案。但往往忽视了解决Bug的第一种方法:查阅API文档。对于新手来说,正确使用API文档,至少能解决50%的问题。所以,我们很有必要来系统学习一下API文档的相关知识。文章目录1. 什么是API文档?2. 为什么要学会查阅API文档?3. 如何学会查阅API文档?1. 什么是API文档? 要解释
-
打开终端输入一下代码就可以啦!while(True): str=input("用户::"); print("假AI::"+str.strip("吗??")+"!");一个例子:Python strip()方法Python strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。注意:该方法只能删除开头或是结尾的字符,不能删除中间部分的字符。strip()方法语法:str.strip([chars]);参数:chars ,移除字符串头尾指定的字符序列。返回值
-
最近遇到了一个联合对数正态分布的相关系数的问题,搜遍全网无果,索性自己动手。本文借鉴了这个知乎回答首先我们有二维正态分布:X,Y∼BVN(μx,μy,σx2,σy2,ρxy)X,Y\sim \mathbf{BVN}(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho_{xy})X,Y∼BVN(μx,μy,σx2,σy2,ρxy)取对数之后我们会得到二维对数正态分布的概率密度函数。只写了第一象限的函数表达式,其他地方都是0。f(x,y)=12π1−ρxy2σxσyx
-
本文将会分享近期发布的七大GitHub机器学习项目。这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP)、计算机视觉、大数据等。最顶尖的Github机器学习项...
-
要说最近几年计算机考研的特点是什么,就是四个字:“年年爆炸”!实际上,计算机考研不仅年年爆炸,而且每年的爆炸情况都比往年严重!我们来看看网络上已经公布的一些考生分数,看看什么才是真正的“神...
-
python猜单词小游戏猜单词小游戏对单词字母的重新排序循环猜测环节完整代码参考来源猜单词小游戏利用python实现一个猜单词的小游戏,需要导入的库为random库。设计逻辑:从单词列表中随机选取一个单词,对单词里的字母顺序进行重新随机排序,从而产生新的字符串,玩家通过这个新的字符串猜测原单词。对单词字母的重新排序先处理这个程序的核心代码就是如何生成乱序的单词jumble = ""while word: position = random.randrange(len(word)) #
-
本文将介绍由腾讯与欧洲顶级农业大学 WUR(荷兰瓦赫宁根大学)共同举办的第二届“国际智慧温室种植大赛”预赛情况。9月20日,腾讯与欧洲顶级农业大学 WUR(荷兰瓦赫宁根大...
-
一、问题背景无人机在拍摄视频时,由于风向等影响因素,不可避免会出现位移和旋转,导致拍摄出的画面存在平移和旋转的帧间变换, 即“抖动” 抖动会改变目标物体 (车辆、行人) 的坐标,给后续的检测、跟踪任务引入额外误差,造成数据集不可用。理想的无抖动视频中,对应于真实世界同一位置的背景点在不同帧中的坐标应保持一致,从而使车辆、行人等目标物体的坐标变化只由物体本身的运动导致,而不包含相机的运动 抖动可以由不同帧中对应背景点的坐标变换来描述二、抖动的量化指标抖动可以用相邻帧之间的 x 方向平
-
技术无国界、无性别、无身份之分。即使在男性占比较高的 IT 技术发展的关键历程里,优秀的女程序员也从不缺席。谈及世界上第一位女程序员 Ada Lovelace,她于 1842 年就已为当代计算机的原型概念 Charles Babbage 的分析机编写出了世界上第一个机器算法;作为一名非常厉害的计算机科学家,Barbara Liskov 的创新性研究为计算机编程领域带来了巨大变革,并领导 CLU 编程语言的设计,也为面向对象程序设计(OPP)奠定了基础;Margaret Hamilton,24 岁的她机
-
任务描述来源为:日本广岛Quest2020:柠檬外观分类竞赛部署实践比赛链接:https://signate.jp/competitions/4313-31比赛截止,大佬们可以去试试,我这个必然拿不住奖,仅做练习。数据集:可以在百度ai studio找到。如何根据据图像的视觉内容为图像赋予一个语义类别是图像分类的目标,也是图像检索、图像内容分析和目标识别等问题的基础。本实践旨在通过一个美食分类的案列,让大家理解和掌握如何使用飞桨2.0搭建一个卷积神经网络。特别提示:本实践所用数据集均来自互
-
前言在上次的文章中我们解析了backbone网络的构建源码,在这篇中我们针对model.py剩余的部分进行debug解析。如果没看过之前文章的小伙伴,推荐先查看这个系列的第一篇和第二篇。下面贴上传送门:1.yolov5源码解析第一篇 架构设计和debug准备2.yolov5源码解析第二篇 backbone源码解析今天我们继续对model.py里的Detect类进行解析,这部分对应yolov5的检查头部分。detect类在model.py里,这部分代码如下:class Detect(nn.Modu
-
本文由『机器之心』授权转载参编辑 / 昱良链接:https://arxiv.org/pdf/1908.08847.pdf时尚电子商务平台通过搜索和个性化来简化服装购买。可...
-
新型智慧城市的创新实践和经验新型智慧城市建设以数据为核心,通过权属划分,要把城市各部门数据进行汇集治理,通过数据中枢,最终将城市的应用场景聚合起来,充分释放数据价值。同时,基于在新型智慧城市建设中的实践和思考,智慧城市建设与运营需要具备四大维度的能力,包含顶层设计能力、数据中台建设能力、智慧城市应用开发能力与生态培养赋能能力。CyberVein具备智慧城市建设运营的全栈式能力,是采用DAVE数据交换机建设新型智慧城市,接下来会结合五个能力维度进行解析。一、顶层设计能力利用大数据为智慧城市找到了出..
-
创建自己的虚拟环境相信很多人学习了很久Python,还不会安装虚拟环境,这里手把手教会你创建自己的虚拟环境,步骤如下:选择一个途径:如:以我的F盘为例新建文件夹并命名。(如:myproject)输入virtualenv .venv创建虚拟环境(.venv中的"."代表创建的是一个隐藏文件)创建完成后打开myproject,出现一个关于.venv的文件夹,表示环境创建成功双击进入.venv 里面的Scripts文件夹输入activate 点击回车激活并进入虚拟

-
目标检测是计算机视觉中的一个重要问题,近年来传统检测方法已难以满足人们对目标检测效果的要求,随着深度学习在图像分类任务上取得巨大进展,基于深度学习的目标检测算法逐渐成为主流。
-
本文目的不是为了强调MTCNN模型的训练,而是如何使用MTCNN提取人脸区域和特征点,为后续例如人脸识别和人脸图片预处理做铺垫。
-
每一个学习OpenCV的人恐怕都被安利过跑一跑SIFT(Scale-invariant feature transform 尺度不变特征变换)图像特征匹配,即使图像有旋转、模糊、尺度的变化,即使使用不同的相机,即使图像拍摄的角度不同,SIFT总能检测到稳定的特征点,并建立对应关系。
-
检测、量化、追踪新冠病毒,基于深度学习的自动CT图像分析有多靠谱?
本文进行了多次回顾性实验,以分析系统在检测可疑COVID-19胸部CT特征中的性能,并使用3D视图来检查评估每位患者随时间推移的疾病进展,并产生“冠状评分”。该研究包括了157名国际患者(中国和美国)的测试集。
-
脉冲神经网络在目标检测的首次尝试,性能堪比CNN | AAAI 2020
论文打算使用DNN-to-SNN转化方法将SNN应用到更复杂的目标检测领域中,图片分类只需要选择分类就好,而目标检测则需要神经网络进行高度准确的数字预测,难很多。在深入分析后,论文实现YOLO的转换主要面临以下两个问题:
-
美颜的目的就是要让人看起来更美,包括皮肤细腻、白皙、光滑,脸部各个器官及脸型可以进行细致的调整,通过美妆调节可以达到快速上妆的效果。为达成上述人脸美颜效果的诉求,我们从技术上主要通过如下四个关键步骤来实现:
-
在 GitHub 上看到一个有趣的开源项目,它能检测我们是否有戴口罩,跑起程序测试后,发现识别率挺高的,也适应不同环境,于是分享给大家。
-
6个步骤,告诉你如何用树莓派和机器学习DIY一个车牌识别器!
几个月前,作者开始考虑让汽车能够具备检测和识别物体的能力。他很喜欢这个主意,因为已经见识到了特斯拉的能力,并且虽然不能立即购买特斯拉(Model 3看起来越来越有吸引力了),但他认为会尽力实现自己的梦想。
-
在本教程中,作者提供了一种简单的方法,任何人都可以使用几行代码构建全功能的对象检测模型。更具体地说,我们将使用Detecto,这是一个在PyTorch之上构建的Python软件包,可简化该过程并向所有级别的程序员开放。
-
MatrixNets:可替代FPN,用于目标检测的可感知比例和长宽比的网络结构
本文介绍了一种新的网络MatrixNets(xNets),它是新的用于目标检测的深层结构。xNets将具有相似大小和高宽比的目标映射到专门的层中,从而使xNets是一种可感知比例和长宽比的网络结构。作者利用xNets来增强单阶段(One-stage)目标检测框架。
-
时间可以是二维的?基于二维时间图的视频内容片段检测 | AAAI 2020
当时间从一维走向二维,时序信息处理问题中一种全新的建模思路由此产生。根据这种新思路及其产生的二维时间图概念,微软亚洲研究院提出一种新的解决时间定位问题的通用方法:二维时域邻近网络 2D-TAN,在基于自然语言描述的视频内容定位和视频内人体动作检测两个任务上验证了其有效性,并在 ICCV 2019 中的 HACS Action Localization Challenge 比赛中获得了第一,相关技术细节将发表于 AAAI 2020 论文“Learning 2D Temporal Adjacent Network for Moment Localization with Natural Language”。本文将对这一研究进行深入解读。
-
高三学生发表AI论文,提出针对网络暴力问题的新模型AdaGCN
近日,在清华大学举行的丘成桐中学科学奖半决赛落下帷幕,来自海内外的 72 支队伍获得了总决赛的入场券,北京师范大学附属实验中学的高三学生白行健,也在其中。他凭借一篇利用图卷积神经网络检测网络暴力的论文,在比赛中脱颖而出。长江后浪推前浪,瞧,00 后也要出道了。
-
在物体检测中的实验结果表明, 在使用更少的参数以及更低的计算花销的情况下,AttoNets 的效率与现有最优模型相当,并在准确率指标上大幅超越现有模型(与 MobileNet-V1相比,最小的 AttoNet 的准确率提升约 1.8%,使用的乘-加操作数和参数量减小了10倍)。另外,本文也在实例分割和物体探测应用中检测了 AttoNets 的效果,并发现与基于 ResNet-50 的 Mask R-Cnn 相比,通过使用基于 AttoNet的 Mask R-Cnn 网络,参数量和计算花销得到了大幅度降低(乘-加操作减少5倍,参数量减少2倍)。
-
本文中,作者提出了用中间域来连接不同域,并逐步解决更容易的自适应子任务。方法是通过转换源图像以模仿目标域中的图像来构造此中间域。为了解决域转移(domain-shift)问题,作者采用对抗学习在特征级去调整分布。另外,还应用了加权任务损失函数去处理中间域中的图像质量不平衡问题。实验结果表明,在目标域的效果上,本文的方法优于最新(SOTA)方法。
-
强大人脸检测系统MTCNN可攻破?华为提出一种可复制、可靠的攻击方法
深度学习方法在人脸检测任务上取得了显著的成果,但这些进展带来了与深度卷积神经网络模型安全性相关的新问题,并揭露了基于DCNN的应用程序有潜在风险。即使在数字领域仅做微小的改动输入,也可能骗过神经网络。有研究已经表明,一些基于深度学习的人脸检测器不仅在数字领域而且在现实世界中都容易受到对抗性攻击。
-
Facebook开源模型可解释库Captum,这次改模型有依据了
前脚 TF 2.0 刚发布,在 PyTorch 开发者大会首日也携 PyTorch1.3 版本而来。除此之外,还发布了隐私保护机器学习框架 CrypTen、模型可解释库 Captum 和下一代目标检测/目标分割研究平台 Detectron2。这篇文章介绍的是Facebook 在深度学习的可解释性问题上发布的新成果——Captum。
-
本文提出了一种新的自适应连接神经网络(ACNet),从两个方面对传统的卷积神经网络(CNNs)进行了改进。首先,ACNet通过自适应地确定特征节点之间的连接状态,在处理内部特征表示时可以灵活地切换全局推理和局部推理。从这个角度来说,现有的很多CNN模型,经典的多层感知器MLP以及最近(2017)提出的NLN(Non-local Neural Networks),都是ACNet的特殊形式。其次,ACNet还能够处理非欧几里德数据( non-Euclidean data,关于非欧几里得数据,下文会有解释)。实验证明,ACNet不仅在分类、检测、分割任务上都有SOTA表现,而且还可以克服传统MLP和CNN的一些缺点。
-
值得收藏!基于激光雷达数据的深度学习目标检测方法大合集(上)
将全卷积网络技术移植到三维距离扫描数据检测任务。具体地,根据Velodyne 64E激光雷达的距离数据,将场景设置为车辆检测任务。在2D点图呈现数据,并使用单个2D端到端全卷积网络同时预测目标置信度和边框。通过设计的边框编码,使用2D卷积网络也能够预测完整的3D边框。

活动
-
2021.03.31
-
2020.12.25
-
2020.06.02
-
2020.06.12
-
2020.07.04
精品推荐
热门推荐
学习资源
关于我们

关注「AI科技大本营」
转载 & 投稿(微信):1092722531
商务合作(微信):15222814505