• 相关博文
  • 最新资讯
加载中...
  • 万字长文综述目标检测领域,你要的都在这里

    目标检测是计算机视觉中的一个重要问题,近年来传统检测方法已难以满足人们对目标检测效果的要求,随着深度学习在图像分类任务上取得巨大进展,基于深度学习的目标检测算法逐渐成为主流。

    2020.06.09 0
  • 从零开始构建:使用CNN和TensorFlow进行人脸特征检测

    人脸检测系统在当今世界中具有巨大的用途,这个系统要求安全性,可访问性和趣味性!今天,我们将建立一个可以在脸上绘制15个关键点的模型。

    2020.03.30 0
  • 人脸算法系列:MTCNN人脸检测详解

    本文目的不是为了强调MTCNN模型的训练,而是如何使用MTCNN提取人脸区域和特征点,为后续例如人脸识别和人脸图片预处理做铺垫。

    2020.03.20 0
  • 一代传奇SIFT算法专利到期

    每一个学习OpenCV的人恐怕都被安利过跑一跑SIFT(Scale-invariant feature transform 尺度不变特征变换)图像特征匹配,即使图像有旋转、模糊、尺度的变化,即使使用不同的相机,即使图像拍摄的角度不同,SIFT总能检测到稳定的特征点,并建立对应关系。

    2020.03.19 0
  • 检测、量化、追踪新冠病毒,基于深度学习的自动CT图像分析有多靠谱?

    本文进行了多次回顾性实验,以分析系统在检测可疑COVID-19胸部CT特征中的性能,并使用3D视图来检查评估每位患者随时间推移的疾病进展,并产生“冠状评分”。该研究包括了157名国际患者(中国和美国)的测试集。

    2020.03.19 0
  • 脉冲神经网络在目标检测的首次尝试,性能堪比CNN | AAAI 2020

    论文打算使用DNN-to-SNN转化方法将SNN应用到更复杂的目标检测领域中,图片分类只需要选择分类就好,而目标检测则需要神经网络进行高度准确的数字预测,难很多。在深入分析后,论文实现YOLO的转换主要面临以下两个问题:

    2020.03.17 0
  • 网红直播时的瘦脸、磨皮等美颜功能是如何实现的?

    美颜的目的就是要让人看起来更美,包括皮肤细腻、白皙、光滑,脸部各个器官及脸型可以进行细致的调整,通过美妆调节可以达到快速上妆的效果。为达成上述人脸美颜效果的诉求,我们从技术上主要通过如下四个关键步骤来实现:

    2020.03.16 0
  • 口罩检测识别率惊人,这个Python项目开源了

    在 GitHub 上看到一个有趣的开源项目,它能检测我们是否有戴口罩,跑起程序测试后,发现识别率挺高的,也适应不同环境,于是分享给大家。

    2020.03.09 0
  • 6个步骤,告诉你如何用树莓派和机器学习DIY一个车牌识别器!

    几个月前,作者开始考虑让汽车能够具备检测和识别物体的能力。他很喜欢这个主意,因为已经见识到了特斯拉的能力,并且虽然不能立即购买特斯拉(Model 3看起来越来越有吸引力了),但他认为会尽力实现自己的梦想。

    2020.03.04 0
  • 几行代码构建全功能的对象检测模型,他是如何做到的?

    在本教程中,作者提供了一种简单的方法,任何人都可以使用几行代码构建全功能的对象检测模型。更具体地说,我们将使用Detecto,这是一个在PyTorch之上构建的Python软件包,可简化该过程并向所有级别的程序员开放。

    2020.02.19 0
  • MatrixNets:可替代FPN,用于目标检测的可感知比例和长宽比的网络结构

    本文介绍了一种新的网络MatrixNets(xNets),它是新的用于目标检测的深层结构。xNets将具有相似大小和高宽比的目标映射到专门的层中,从而使xNets是一种可感知比例和长宽比的网络结构。作者利用xNets来增强单阶段(One-stage)目标检测框架。

    2020.01.16 0
  • 时间可以是二维的?基于二维时间图的视频内容片段检测 | AAAI 2020

    当时间从一维走向二维,时序信息处理问题中一种全新的建模思路由此产生。根据这种新思路及其产生的二维时间图概念,微软亚洲研究院提出一种新的解决时间定位问题的通用方法:二维时域邻近网络 2D-TAN,在基于自然语言描述的视频内容定位和视频内人体动作检测两个任务上验证了其有效性,并在 ICCV 2019 中的 HACS Action Localization Challenge 比赛中获得了第一,相关技术细节将发表于 AAAI 2020 论文“Learning 2D Temporal Adjacent Network for Moment Localization with Natural Language”。本文将对这一研究进行深入解读。

    2019.12.23 0
  • 高三学生发表AI论文,提出针对网络暴力问题的新模型AdaGCN

    近日,在清华大学举行的丘成桐中学科学奖半决赛落下帷幕,来自海内外的 72 支队伍获得了总决赛的入场券,北京师范大学附属实验中学的高三学生白行健,也在其中。他凭借一篇利用图卷积神经网络检测网络暴力的论文,在比赛中脱颖而出。长江后浪推前浪,瞧,00 后也要出道了。

  • AttoNets,一种新型的更快、更高效边缘计算神经网络

    在物体检测中的实验结果表明, 在使用更少的参数以及更低的计算花销的情况下,AttoNets 的效率与现有最优模型相当,并在准确率指标上大幅超越现有模型(与 MobileNet-V1相比,最小的 AttoNet 的准确率提升约 1.8%,使用的乘-加操作数和参数量减小了10倍)。另外,本文也在实例分割和物体探测应用中检测了 AttoNets 的效果,并发现与基于 ResNet-50 的 Mask R-Cnn 相比,通过使用基于 AttoNet的 Mask R-Cnn 网络,参数量和计算花销得到了大幅度降低(乘-加操作减少5倍,参数量减少2倍)。

  • 目标检测的渐进域自适应,优于最新SOTA方法

    本文中,作者提出了用中间域来连接不同域,并逐步解决更容易的自适应子任务。方法是通过转换源图像以模仿目标域中的图像来构造此中间域。为了解决域转移(domain-shift)问题,作者采用对抗学习在特征级去调整分布。另外,还应用了加权任务损失函数去处理中间域中的图像质量不平衡问题。实验结果表明,在目标域的效果上,本文的方法优于最新(SOTA)方法。

    2019.10.30 0
  • 强大人脸检测系统MTCNN可攻破?华为提出一种可复制、可靠的攻击方法

    深度学习方法在人脸检测任务上取得了显著的成果,但这些进展带来了与深度卷积神经网络模型安全性相关的新问题,并揭露了基于DCNN的应用程序有潜在风险。即使在数字领域仅做微小的改动输入,也可能骗过神经网络。有研究已经表明,一些基于深度学习的人脸检测器不仅在数字领域而且在现实世界中都容易受到对抗性攻击。

    2019.10.25 0
  • Facebook开源模型可解释库Captum,这次改模型有依据了

    前脚 TF 2.0 刚发布,在 PyTorch 开发者大会首日也携 PyTorch1.3 版本而来。除此之外,还发布了隐私保护机器学习框架 CrypTen、模型可解释库 Captum 和下一代目标检测/目标分割研究平台 Detectron2。这篇文章介绍的是Facebook 在深度学习的可解释性问题上发布的新成果——Captum。

    2019.10.14 0
  • 分类、检测、分割任务均有SOTA表现,ACNet有多强?

    本文提出了一种新的自适应连接神经网络(ACNet),从两个方面对传统的卷积神经网络(CNNs)进行了改进。首先,ACNet通过自适应地确定特征节点之间的连接状态,在处理内部特征表示时可以灵活地切换全局推理和局部推理。从这个角度来说,现有的很多CNN模型,经典的多层感知器MLP以及最近(2017)提出的NLN(Non-local Neural Networks),都是ACNet的特殊形式。其次,ACNet还能够处理非欧几里德数据( non-Euclidean data,关于非欧几里得数据,下文会有解释)。实验证明,ACNet不仅在分类、检测、分割任务上都有SOTA表现,而且还可以克服传统MLP和CNN的一些缺点。

  • 值得收藏!基于激光雷达数据的深度学习目标检测方法大合集(上)

    将全卷积网络技术移植到三维距离扫描数据检测任务。具体地,根据Velodyne 64E激光雷达的距离数据,将场景设置为车辆检测任务。在2D点图呈现数据,并使用单个2D端到端全卷积网络同时预测目标置信度和边框。通过设计的边框编码,使用2D卷积网络也能够预测完整的3D边框。

每页显示 共38条数据 < 1 2 >      到第 GO