• 相关博文
  • 最新资讯
加载中...
  • 用于多任务CNN的随机滤波分组,性能超现有基准方法

    本文提出了一种用于多任务学习的CNNs中任务特定(task-specific)和共享表示(shared representations)的概率学习方法。具体来说,本文提出了一个随机滤波分组(stochastic filter groups,SFG)的方法,SFG是一种将每一层中的卷积核分配给专有(specialist)或通用(generalist)组的机制,这些组分别针对不同的任务或在不同的任务之间共享。SFG确定了层与网络中特定于任务和共享表示的结构之间的连接性,使用变分推断(variational inference)来学习可能的卷积分组和网络参数分组的后验分布。实验证明,本文所提出的方法适用于多个任务,并且比基准方法有更好的性能。

    2019.11.22 0
  • ICCV 2019 | 加一个任务路由让数百个任务同时跑起来,怎么做到?

    传统的多任务(MTL)学习方法依赖于架构调整和大型可训练参数集来联合优化多个任务。但是,随着任务数的增多,体系结构调整和资源需求的复杂性也随之增加。在本文中,作者引入了一种新方法,该方法在卷积激活层上应用条件特征的智能转换,使模型能够成功地执行多个任务。为了和常规的多任务学习做区分,本文引入了Many Task Learning (MaTL)作为特例。MaTL的特殊之处在于它指代一个模型能完成超过20个任务。伴随MaTL任务,作者引入了任务路由(TR)的方法并将其封装在一个称为任务路由层(TRL)的层中,使得一个模型能适合数百个分类任务。

    2019.11.11 0